The Aruba-Certified Mobility Professional (ACMP) 6.1 exam questions cover the topics listed below. The questions include key concepts, networking and topology design, GUI and CLI interpretation, GUI and CLI troubleshooting and interpretation of CLI configuration file segments.

- Product Knowledge
- Firewall Roles and Policies
- Operations
- Planning and Design
- RFProtect
- Troubleshooting
- Applications and Solutions

Preparation for ACMP includes familiarity with IAW/SWDI 6.1 courseware, or its equivalent MBC 6.1. Additionally, review of VRDs will help to reinforce the concepts learned within the courses.
Topic Details

1. Product Knowledge
 a. Mobility Controllers Models
 i. Understand the limits of user scaling for different controller models
 ii. Understand the limits of AP scaling for different controller models
 iii. Understand the limits of Remote AP scaling for different controller models
 iv. Power supplies offered for various models
 v. Chassis based controller modules
 vi. Power-over-Ethernet support
 b. AP models
 i. Indoor AP models
 ii. Outdoor AP models
 iii. Models supporting internal and external antennas
 iv. Antenna types offered as external antennas
 v. Models supporting Power-over-Ethernet support
 vi. 802.11a/b/g/n support by model
 c. Licensing
 i. Understand the 6.1 licensing model for all controllers
 ii. Be able to articulate the features and functions of the Aruba software licenses
 iii. Be able to articulate the features and functions included in the base ArubaOS

2. Firewall Roles and Policies
 a. Policy Design
 i. Function of firewall design
 ii. Interpretation and troubleshooting of firewall rule policy
 iii. Application of firewall policy to user roles
 iv. Application of firewall policy to interfaces
 v. Be able to articulate the difference between a stateful firewall and an access control list (ACL)
 vi. Describe an Ethertype ACL
 b. Roles
 i. Describe the function of built-in roles
 ii. Describe the use and creation of user created roles
 iii. Understand role derivation
 c. Aliases
 i. Describe the function and use of aliases
 ii. Understand the built in aliases
 d. NAT
 i. Describe the function of source NAT
 ii. Describe the function of destination NAT
 iii. Understand the use of NAT for captive portal authentication
 iv. Describe VLAN based NAT functionality
 e. Interpret example policy

Review of VRDs will help to reinforce the concepts learned within the courses.
3. Operations
 a. Authentication
 i. 802.1X
 ii. Pre-Shared Keys
 iii. Open system
 iv. Captive portal with credentials
 v. Captive portal with guest logon
 b. Configuration Wizards
 i. Configuration of the controller using the Controller Wizard
 ii. VLAN and IP address configuration
 iii. Port configuration
 iv. Network time configuration
 v. Controller role configuration
 vi. License configuration
 vii. LAN configuration
 viii. WLAN configuration for employee SSIDs
 ix. WLAN configuration for guest SSIDs
 x. RADIUS server configuration
 xi. 802.1X authentication configuration
 xii. Captive portal configuration and customization
 c. Management
 i. Software upgrades on the controllers and APs
 ii. Interface layout
 iii. AP management
 iv. License management
 v. Configuration screens
 vi. Monitoring screens
 vii. Security screens
 d. Power over Ethernet
 i. Power provided
 ii. Standards
 iii. Transmission distances
 e. Roaming
 i. Layer 2 roaming
 ii. Layer 3 roaming
 iii. Mobility domains
 iv. HAT table configuration
 f. RF management and ARM
 i. ARM channel and power selection
 ii. ARM self healing
 iii. ARM band steering
 iv. ARM Spectrum load balancing
 v. ARM Airtime fairness
 vi. ARM rate shaping
 vii. Client aware ARM scanning
 viii. Spectrum Monitor provisioning
 ix. Spectrum Monitor usage

An ACMP certified engineer is able to deploy and manage a large-scale, multi-controller network.
g. Master/local
 i. Differences between a local controller and a master controller
 ii. What is configured on the local
 iii. What is configured on the master
h. Centralized Auth and Encryption
 i. Centralized encryption
 ii. Encryption methods
 iii. Layer 2 Wi-Fi frame termination
 iv. RADIUS authentication
 v. Fail through servers
 vi. Fall through servers
 vii. Machine authentication
 viii. Per-SSID captive portal
i. AP Provisioning and Configuration
 i. Static provisioning
 ii. Dynamic provisioning
 iii. CLI configuration
 iv. Web interface configuration
 v. Group selection
 vi. Antenna provisioning
 vii. Serial configuration
j. User/Server Derivation Rules
 i. User derivation rules
 ii. Server derivation rules
 iii. Rule based role derivation
k. Profiles
 i. Profile concept
 ii. Profile hierarchy
 iii. Profile reuse
l. Controller configuration methods
 i. SNMP configuration
 ii. Syslog configuration
 iii. VLANs & VLAN trunking
 iv. IP addressing
 v. Use of the loopback interface
 vi. Spanning tree
 vii. VRRP
4. Planning and Design
 a. Networking
 i. Layer 2 networks
 ii. Layer 3 networks
 iii. Routing
 b. Self-healing
 i. AP deployment design
 ii. ARM functionality
 c. L2 model traffic flow
d. Layer 3 model traffic flow
e. Captive portal
 i. Authentication types
 ii. Authentication sources
 iii. Provisioning capabilities
 iv. Internal DB functionality
 v. Guest provisioning role
f. Visual RF
 i. Planning a deployment
 ii. Importing plan to controller
 iii. Adding devices to AMP server
g. Master/local
 i. Where to place controllers
 ii. Direct and indirect connection of APs
 iii. Layer 2 vs. Layer 3 controller operation
 iv. Controller communication considerations
h. Switch redundancy
 i. Local redundancy
 ii. Master redundancy
i. Mobility
 i. Layer 2 Mobility
 ii. Layer 3 Mobility
j. Wired Access Control
 i. Wired Authentication
 ii. VLAN & Firewall port policies
k. Controller discovery
l. S3500
 i. Planning a deployment
 ii. Provisioning IP
 iii. Establishing tunnels
5. RF Protect
 a. Rogue & Interfering APs
 i. Detection
 ii. Classification
 iii. Containment
 b. Licensing
6. Troubleshooting
 a. Client Connectivity
 i. User connection
 ii. AP status
 b. Aruba platform
 i. Layer 2 connectivity
 ii. Layer 3 connectivity
 iii. Licensing
 iv. AP counts
 v. Firewall policy
 vi. Role derivation
vii. Master/local connectivity
viii. AP connectivity
ix. DHCP
x. Controller IP
c. Infrastructure
 i. Intervening ACLs
 ii. DHCP
7. Applications and Solutions
 a. RAP
 i. Configuration
 ii. Licensing
 iii. Operation modes
 iv. Forwarding modes
 v. Maintenance
 vi. Zero Touch provisioning
 b. Mesh
 i. Mesh topology
 ii. Configuration
 iii. Licensing
 iv. Remote Mesh portal
 c. Location
 i. Locating a client
 ii. AP design for location
 iii. Location functionality

Sample Questions

1. Which access point models support concurrent operations in both the “b/g” band as well as the “a” band? (Choose all the correct answers.)
 A. RAP-2
 B. AP-120
 C. AP-125
 D. AP-135
 E. AP-125

2. Which statement is true about the Content Security License?
 A. Applied to the master controller
 B. Applied to all the controllers in the network
 C. It is based on number of users
 D. It is based on number of APs

Building upon ACMA, the ACMP exam covers more complex network settings such as multiple controllers and Layer 3 mobility.
3. When a user first associates to the WLAN, what role are they given?
 A. The guest role
 B. The stateful role
 C. The initial role in the server group profile
 D. The initial role in the AAA profile

4. Which tunnel protocol is used between controllers to support Layer 2 mobility in an Aruba environment?
 A. Basic IP
 B. GRE
 C. IPinIP
 D. Mobile IP
 E. None of the above

5. Which of the statements below are TRUE regarding ARM’s Spectrum Load Balancing feature? (Choose all the correct answers)
 A. Available only on 5-GHz radios
 B. Disabled by default
 C. Balances client load across available channels/APs
 D. Enabled by default

6. Which of the following actions cannot be done in the offline Visual RF plan?
 A. Create a BOM
 B. Exporting a plan to the controller
 C. Tracking APs and client devices
 D. Replicating floor plans

7. For controller redundancy to work, to which IP address should the Aruba AP terminate its GRE tunnel?
 A. VRRP IP address
 B. Management IP of an Aruba controller
 C. Management IP of the backup Aruba controller
 D. HSRP IP address
8. (group8) #show ap active

Active AP Table

<table>
<thead>
<tr>
<th>Name</th>
<th>Group</th>
<th>IP Address</th>
<th>11g Clients</th>
<th>11g Ch/EIRP/MAX EIRP</th>
<th>11a Clients</th>
<th>11a Ch/EIRP/MAX EIRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP1</td>
<td>building1</td>
<td>10.1.80.150</td>
<td>0</td>
<td>AM</td>
<td>0</td>
<td>AP-HT:149+/19/19</td>
</tr>
<tr>
<td>AP2</td>
<td>building1</td>
<td>10.1.80.151</td>
<td>0</td>
<td>AM</td>
<td>0</td>
<td>AM</td>
</tr>
</tbody>
</table>

A user has called technical support because they cannot see any of their APs in building one. You perform the “show” command as illustrated above.

What can you conclude about these two APs from this output?

A. The GRE for the APs terminate on two different controllers: 10.1.80.150 and 10.1.80.151
B. The system will not function because there is no building1 group defined
C. The building1 APs are configured to not accept any user connections
D. The user needs to configure his client to use the b/g band
E. The user needs to configure his client to use the a band

9. A client device associates with an SSID provisioned with 802.1X authentication. The client is set for PEAP authentication. EAP termination (AAA Fastconnect) is disabled on the controller. But the client continuously cycles through the authentication process. Which of the following could cause this? Choose all that apply.

A. The client is provisioned with the wrong EAP type
B. The client has an expired or revoked server certificate
C. The DHCP server is not enabled
D. The VLAN is missing for the SSID
E. The controller does not support PEAP in this mode

10. A Remote AP provisioned with an SSID in the operational mode “always” has which one of the following characteristics?

A. The RAP must obtain its configuration from the controller each time it boots
B. The operational mode applies to tunnel and split-tunnel forwarding SSID
C. The operational mode applies to a Bridge forwarding SSID
D. The RAP does not support this mode
E. The SSID only appears if the AP does not see the controller
11. What is the purpose of Mesh Clusters?
 A. To separate mesh points and mesh portals
 B. To make sure that mesh points and portals with the same VAPs are not in the same cluster
 C. To create a group of mesh points and mesh portals that create mesh links with each other using the same 802.11 connection settings
 D. To cluster mesh APs of the same model together

12. Which of the following charts are available for selection in the Spectrum Dashboard for an AP-125?
 A. FFT Duty Cycle
 B. Channel Quality
 C. Active Devices by Channel
 D. Number of Spectrum Monitors

13. Which of the following needs to be done prior to using the GUI quick setup of a factory defaulted Aruba S3500 Mobility Access Switch?
 A. Set the S3500 IP address to the 172.16.0.0 range
 B. Quick-Setup needs to be enabled on the LCD Panel
 C. Connect the S3500 to the network for DHCP
 D. Set the laptop IP address to the 192.168.0.0 range

Answers to odd numbered questions:

1 – C,D,E 3 – D 5 – B,C 7 – A 9 – A,B 11 – C 13 – B